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Shallow impurity states in a freestanding semiconductor nanowire and in a semiconductor nanowire sur-
rounded by a metallic gate are studied within the effective mass approximation. We calculate the total energy
of the electron and the binding energy by using �1� a variational approach, which provides an upper bound to
the electron energy, and �2� the finite element method which is “numerically” exact. The dependence of the
binding energy and the extent of the shallow impurity wave function on the wire radius R and the ionized
impurity position in the nanowire is examined. The validity of the often used variational calculation is critically
examined by calculating the difference of the binding energies obtained from the two different methods as a
function of the wire radius R and the ionized impurity position.
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I. INTRODUCTION

Semiconductor nanowires �NWs� are attractive building
blocks for nanoscale electronic devices, including field-effect
transistors,1,2 inverters,3 logic circuits,7 sensors,8–10 and
decoders,11 because of the intrinsic small size and the prom-
ise of enhanced mobility. Continued progress toward inte-
grated nanoelectronic circuits will require advances in our
ability to better control the electronic properties of these
building blocks and to assemble them into increasingly com-
plex structures. Considerable efforts have been placed on
doping Si,3–5 Ge,6,12 and GaN NWs to control their electrical
properties. However, doping of nanostructures remains a
challenge as a result of both fundamental synthetic issues
and statistical fluctuations that are intrinsic to homogeneous
doping of small structures. Moreover, charged dopant centers
will limit the mobility20 and the corresponding performance
of these semiconductor nanowires.

The composition of the nanowires can also be modulated
along the radial plane to form core-shell structures.13–17 Due
to the dielectric and strain mismatch at the core-shell inter-
face, the properties of the axial nanowires will be modified.
The effect of the dielectric confinement to the electronic
structures,18,19 scattering properties,20,21 and excitonic ab-
sorption spectrum22–24 of free electrons in freestanding nano-
structures have been investigated. The electronic structures
of a core-shell wire, which take strain, piezoelectric, and
dielectric effects into account, have been calculated using the
tight-binding method.25 The localization of the electron
states in a nanowire surrounded by a metallic shell
nanocontact26 was also recently investigated.

In this paper, we investigate the effect of the dielectric
mismatch on the shallow impurity states in semiconductor
nanowires and we study how these bound states depend on
the radial position of the impurity. We perform such a calcu-
lation for a freestanding NW and a NW surrounded by a
metallic gate. We will use two independent methods: the
variational method and the finite element method �FEM�
within the effective mass approximation.27,28 The depen-
dence of the binding energies and wave functions on the wire
radius R and the impurity radial position �i will be investi-
gated.

This paper is organized as follows: We present the physi-
cal model in Sec. II. The results of the variational and finite
element calculations are presented in Secs. III and IV, re-
spectively. The validity of the variational calculation is dis-
cussed in Sec. V. Our conclusions are presented in Sec. VI.

II. MODEL

A schematic illustration of the model system is shown in
Fig. 1. We used the effective mass approximation, where the
core material has an effective mass m

e
* and dielectric permit-

tivity �1, while the surrounding barrier material has a dielec-
tric permittivity �2. The potential at an arbitrary point inside
such a system is the sum of the potential generated by the
electron and the ionized impurity. A similar problem was
previously studied in Ref. 22, where the authors calculated
the binding energies and excitonic absorption spectrum of a
freestanding GaAs nanowire. Here, the potential at an arbi-

trary point generated by a single charged particle at rq
� can be

obtained by solving the following Poisson equation:20,22

�„���� � V�r�,rq
� �… = − q��r� − rq

� � , �1�

with

���� = �2 + ��1 − �2���R − �� .

So the potential at an arbitrary point inside the wire for a
single charged particle is18

FIG. 1. Schematics of the system: A shallow impurity in a nano-
wire surrounded by a different dielectric medium.
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with Km�x� and Im�x� the modified Bessel functions of the
third and first kind, respectively, and Km� �x� and Im� �x� their
derivatives. The electron potential energy is obtained after
taking the following integral:

Utot�r�e� = − e� dr���r� − r�e��V�r�,r�e� + V�r�,r�i�� . �4�

The first term in the integral is the electrostatic energy due to
the images of the electron itself. We should subtract the elec-
trostatic self-energy coming from part of the first term that is
proportional to ��r�−r�e� / �r�−r�e�. The second term is the elec-
trostatic energy due to the ionized impurity and its images.
Then the electrostatic energy of the electron can be rewritten
as18

Utot�r�e� = Udir�r�e,r�i� + Uind�r�e,r�i� + Uself��e� , �5�

which consists of three parts: the direct Coulomb potential
energy Udir�r�e ,r�i�; the induced potential energy Uind�r�e ,r�i�,
which comes from the electron and the image of the ionized
impurity; and the self potential energy Uself��e�, which is the
interaction between the electron and its image.18 Moreover,
the self potential energy Uself��e� is independent of the ion-
ized impurity position and depends only on the electron ra-
dial coordinate. We can rewrite Utot as follows:

Utot = Uint�r�e,r�i� + Uself��e� , �6�

with Uint�r�e ,r�i� the electrostatic potential energy between the
electron and the ionized impurity together with its images.

Then the Schrödinger equation of the electron inside the
nanowire within the effective mass approximation is given
by

	−
	2

2m
e
*�e

2 + Utot + Uc��e�

e = Etot
e, �7�

where Uc��e� is the confinement potential, which we assume
to be a circular potential well with infinite high barriers as
follows:

Uc��e� = �0, �e � R

� , �e � R .



As we cannot solve the three-dimensional �3D� Schrödinger
equation analytically, we will use two independent methods
to solve this differential equation: variational method and
FEM.

III. RESULTS OF THE VARIATIONAL CALCULATION

We assume that the radius of the wire is sufficiently small
such that the single particle confinement energy is much
larger than the Coulomb energy. This allows us to use the
adiabatic approximation. We take the wave function in the
radial plane to be the wave function as obtained by solving
the two-dimensional �2D� circular infinite high well.28 Next,
we multiply each side of the Schrödinger equation with the
�� ,�� part of the wave function, averaging out the �� ,��
motion, which leads us to a one-dimensional effective
Schrödinger equation in the z direction.

Thus, we assume a factorized form of the wave function

e as 
��e ,�e���ze�, multiply Eq. �7� with the normalized

*��e ,�e� from the left, and integrate over the radial coordi-
nates. Finally, we obtain the effective one-dimensional
Schrödinger equation:

	−
	2

2m
e
*�z

2 + Uef f�z�
��ze� = Ez��ze� , �8�

with

Ez = Etot − E� − Eself ,

Uef f�z� = �
0

R

�ed�e�
0

2�

d�e
*��e,�e�Uint�re
� ,ri

� �
��e,�e� ,

and

Eself = �
0

R

�ed�e�
0

2�

d�e
*��e,�e�Uself�re
� �
��e,�e� . �9�

Here, E�= �	xn
�l��2 /2m

e
*R2 is the confinement energy28 of the

electron, which can be obtained by solving the 2D circular
infinite high well. xn

�l� is the nth zero of the Bessel function of
order l.

Since we are dealing with a shallow impurity that is simi-
lar to a hydrogen atom, we will use normalized hydrogenic-
type ground and first excited trial wave functions �g�ze�
= �2 /���1/4e−ze

2/� and � f�ze�=2�2 /��1/4�−3/4zee
−ze

2/� along the
z direction �here, � is the trial parameter�. Then the ground
and first excited state energies of the electron in the z direc-
tion can be written in the following form:

Eg��� =
	2

2m
e
*�

+
4

�2��
�

0

+�

dzee
−2ze

2/�Uef f�z� , �10�

Ef��� =
3	2

2m
e
*�

+
8�2

�3/2��
�

0

+�

dzeze
2e−2ze

2/�Uef f�z� . �11�

By minimizing Eqs. �10� and �11� with respect to �, we
obtain the ground and first excited state energies of the elec-
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tron in the z direction, respectively. Here, we will consider
two cases: a freestanding NW and a semiconductor wire sur-
rounded by a metallic gate.

A. Freestanding nanowire

As an example, we consider a GaAs nanowire. For GaAs
freestanding nanowires, we have �1=12.5�0, �2=�0, and
m

e
*=0.067me. The ground state and first excited state ener-

gies for different values of wire radius R are shown in Fig. 2
for the impurity fixed at the center of the wire, 0.5R from the
center, and 0.96R from the center. We notice that the ground
state and first excited state energies first decrease with in-
creasing radius of the wire and, after reaching a local mini-
mum, it will increase and asymptotically reach the 3D result.
This behavior can physically be understood as follows. We
can write the total energy as

Etot = E� + Ez + Eself .

The confinement energy E� is positive and proportional to
1 /R2. It decreases with increasing radius R and is dominant
for small R. While Ez and Eself are both proportional to 1 /R
and the sum of these two terms is negative, it �the sum�
increases when the radius R increases and leads to the domi-
nant contribution for large R. We make these tendencies
clearer in the inset of Fig. 2: E� is very large when R is small
and decreases very quickly to zero, while Ez+Eself will in-
crease toward zero slower. So with increasing R, the total
energy will first decrease as E�, and then increase as the sum
of the last two terms. When the ionized impurity is located
0.5R from the axis of the wire, the total energy will reach its
minimum value when R is around 16 nm. Figure 2 also
shows that the total energy will be larger when the ionized

impurity is closer to the boundary of the NW; however, for
the case of freestanding nanowires, these differences are not
very large.

Next, we will study the behavior of the binding energy
with respect to the wire radius R. In the variational calcula-
tion, when there is no impurity inside the wire, the total
energy of the electron is just the sum of the confinement
energy E� and the self-energy Eself �see Eq. �9�, the self-
energy is only a function of the radius R�. So the binding
energy is the difference between the total energy without an
impurity and the total energy with an impurity, which is just
−Ez. Figure 3 shows the dependence of the binding energy
on the wire radius R for three different ionized impurity po-
sitions. The binding energy increases when the radius R be-
comes smaller and, due to the dielectric mismatch, the bind-
ing energy will be several hundreds of meV or even close to
1 eV when the radius is several nanometers, as shown in the
inset �similar results were presented in Refs. 19 and 24�. The
binding energies are also affected by the ionized impurity
position: the closer the ionized impurity is to the edge of the
NW, the smaller the binding energy will be. However, the
differences in the binding energies are only noticeable when
the radius is neither too large nor very small.

B. Semiconductor nanowire surrounded by a metallic gate

The metallic gate is modeled as having a dielectric per-
mittivity �2� +�. Figure 4 shows the ground state and first
excited state energies as a function of wire radius R for three
different ionized impurity positions. From Fig. 4, we notice
that the main difference with freestanding nanowires in
vacuum is that the total energy is much smaller. The curve
for the ground state with the impurity fixed at 0.96R overlaps
with the curves of the first excited state. From the inset of
Fig. 4, we see that the energies of the first excited state and
the ground state for �i=0.96R almost overlap with the curve
of E�+Eself, which is, in fact, the total energy of the electron
inside the wire without an impurity. That means that the
impurity has a small effect on the total energy and, conse-
quently, the binding energy will be very small. This can also
be seen from the curves of the binding energy shown in
Fig. 5.

FIG. 2. �Color online� Ground state �solid line� and first excited
state �dashed line� energies as a function of the wire radius R in a
freestanding GaAs nanowire. The ionized impurity is fixed at the
center of the wire �red line�, 0.5R from the center �green line�, and
0.96R from the center �blue line�. The inset shows the different
contributions to the total energy as a function of the radius R of the
NW, �i=0.5R.

FIG. 3. �Color online� Binding energy as function of wire radius
R. Inset: Zoom of the binding energy for small values of R.
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When comparing Figs. 5 and 3, we notice that the impu-
rity position influences much more strongly the binding en-
ergy for a GaAs wire surrounded by a metallic gate and that
the impurity binding energy is much smaller than for the
corresponding freestanding nanowire, even for a very small
radius. For example, for R=20 nm and �i=0, the binding
energy is about 45 meV for a freestanding GaAs nanowire
and 6 meV for a GaAs nanowire with a metallic gate, and for
�i=0.5R, the binding energies are 40 and 3 meV, respec-
tively. This is due to the screening of the Coulomb potential
by the metallic gate. This is also the reason why the impurity
position has a large effect on the binding energy. The binding
energy will decrease toward zero when the impurity moves
from the center of the wire to the edge of the wire.

IV. NUMERICALLY “EXACT” RESULTS

By using the technique of finite elements, we are able to
solve the 3D Schrödinger equation numerically. In order to
make the calculation faster, we will rewrite the 3D

Schrödinger equation �7�. The self potential energy that ap-
pears in the total electrostatic potential energy Utot of the
electron �6� will first be calculated and fitted to a function of
the electron radial coordinate. The first term in Eq. �6� will
be obtained by using a Poisson solver, which will give the
electrostatic energy between the electron and the ionized im-
purity �together with the images of the ionized impurity�.
The 3D Schrödinger equation is then solved by using the
finite elements method. Thus, the 3D Schrödinger equation is
rewritten as

	−
	2

2m
e
*�e

2 + Uint�r�e,r�i� + Uself

��e,�e,ze� = Etot
��e,�e,ze� .

�12�

The self potential energy is only a function of the radial
coordinate and is shown in Fig. 6. Notice that the self-energy
for freestanding NWs has the opposite sign from that of
NWs with a metallic gate. When the electron is close to the
edge of the wire, the curves have a 1 / �R−�e� singularity.

For our freestanding GaAs nanowire, the total energy of
the ground state is shown in Fig. 7�a�. The solid curves are
the results from the finite element calculation, which are al-
ways smaller than the variational one. This is not surprising
since the variational calculation provides an upper bound to
the exact result. The curves converge for a large radius. No-
tice that the curve for the impurity at �i=0.96R is distinct
from the other curves even when R is large. This is not so for
the variational results. This difference is due to the fact that
in the variational result, the trial function was such that the
electron is always symmetrically localized around �=0, i.e.,
the electron is not able to follow the impurity when it is
shifted toward the boundary of the nanowire.

In Fig. 8, we plot the relative change of the energy
Etot��i� /Etot��i=0� as a function of the impurity position us-
ing our finite element calculation. When R is small �as shown
by the curve for R=2 nm shown in Fig. 8�, the absolute
value of Etot��i� /Etot��i=0� stays around 1 and the slope is
very small; i.e., the difference between the total energies for
different impurity positions is small. However, if we increase

FIG. 4. �Color online� Ground state �solid lines� and first excited
state �dashed lines� energies of a GaAs wire surrounded by a me-
tallic gate for three different positions of the ionized impurity. Inset:
Total energy of the electron inside the wire without an impurity
compared with the total energy with an impurity.

FIG. 5. �Color online� Binding energy as a function of the wire
radius R for different impurity positions in a NW surrounded by a
metallic gate.

FIG. 6. �Color online� Self potential energy for a freestanding
GaAs nanowire �green dotted curve� and a GaAs wire surrounded
by a metallic gate �red solid curve� as a function of the electron
radial position �. The energy is in units of U0=e2 /4��1R.

LI et al. PHYSICAL REVIEW B 77, 115335 �2008�

115335-4



the radius R, the slope will increase and the energy exhibits a
larger dependence on the position of the impurity. When R is
beyond 5–10 nm, the total energy becomes negative �see
Fig. 7� and moving the impurity closer to the edge of the
wire increases the total energy �i.e., less negative� and, con-
sequently, the ratio Etot��i� /Etot��i=0� decreases. When we
continue to increase the radius R, the slope will decrease
toward zero and the difference will become small again.
These behaviors of Etot��i� /Etot��i=0� can be understood as
follows: �1� when R is very small, the confinement energy is
extremely large and dominates the total energy, the Coulomb
energy coming from the electron and the impurity is negli-
gible as compared to the confinement energy, and the con-
finement energy slightly depends on the impurity position, so
the difference is very small when the radius R is small. �2�
When we increase the radius R, the Coulomb energy will
become comparable to the confinement energy, the electron
will prefer to be situated around the wire center due to the
confinement, and the Coulomb part of the total energy will
increase when the impurity moves from the center to the
interface, so the difference between the energies of the dif-
ferent impurity positions will increase when moving the im-
purity toward the interface. �3� When R is very large, the
confinement energy will be negligible and the Coulomb en-
ergy will be dominant. The electron states will be similar as
in a hydrogen atom for most impurity positions, so the dif-
ference in the total energy will be small again. However,

when the impurity is very close to the interface, the effect of
the ionized impurity will be counteracted by the effect of its
image charge, while the self-energy will increase very
quickly, so the difference in the total energy will still be
large. The behavior of Etot��i� /Etot��i=0� for a GaAs wire
surrounded by a metallic gate is similar, except that now the
negative slope is formed for a larger radius R. When R is
very small and the impurity is very close to the interface, the
pointlike image charge and the strong radial confinement are
the response for the large number of numerical iterations
needed to obtain the bound state in our finite element
method.

Next, we study the binding energy using the finite element
calculation. The electron energy in the absence of the impu-
rity is first calculated by solving the following 2D
Schrödinger equation:

	−
	2

2m
e
*�e

2 + Uself

��e,�e� = Etot2
��e,�e� . �13�

The binding energy is defined in the following as the energy
required to free the electron from its bound state:

Ebind = Etot2 − Etot. �14�

The binding energy is shown in Fig. 9. In the case of a
freestanding nanowire �Fig. 9�a��, we found that, qualita-
tively, the behavior is similar to the one obtained from the
variational calculation, except for the curve with �i=0.96R.
When the impurity is 0.96R away from the center, the bind-
ing energy, like the total energy, will still be different from
the other curves when R is large. Figure 9�b� shows the re-
sults for a GaAs wire with a metallic gate. The results are

FIG. 7. �Color online� �a� Comparison between the total energy
as obtained from the finite element method �solid curves� and the
variational method �dash curves� for the case of freestanding GaAs
nanowires. �b� The same as �a� but now for the case of a GaAs
nanowire surrounded by a metallic gate.

FIG. 8. �Color online� �a� The total energy as a function of the
impurity position divided by the total energy for �i=0 for a free-
standing GaAs nanowire. �b� The same as �a� but now for the case
of a GaAs nanowire surrounded by a metallic gate. Results are
given for several values of the radius R of the NW.

DIELECTRIC MISMATCH EFFECT ON SHALLOW… PHYSICAL REVIEW B 77, 115335 �2008�

115335-5



very different from those of the variational calculation. For
most impurity positions, the binding energy will first de-
crease and then increase when we increase the radius R of
the wire. However, when the ionized impurity is very close
to the interface, as there is only a weak bound state, the
binding energy will monotonously increase �from around
zero�. The decreasing tendency for small R can be under-
stood as follows. When the radius is very small, since the
confinement energy is very large, the electron will be com-
pressed to move in a small area around the axis of the NW,
which is also close to the impurity. Consequently, the abso-
lute value of the Coulomb energy between the electron and
the ionized impurity is large, while the self-energy and the
confinement energy will be similar to the case of a wire
without an impurity, and so the binding energy is large. If we
increase the radius R, the confinement energy will be smaller
and the electron will move in a larger area but still around
the axis of the NW. The average distance between the elec-
tron and the impurity will also increase, so the absolute value
of the Coulomb energy will be smaller. However, as the elec-
tron moves mainly around the wire axis, the change of the
self-energy and the confinement energy are small, leading to
a decrease of the binding energy. The increasing tendency at
large R �when the Coulomb energy is comparable to the con-
finement energy� can then be understood as follows. When

the impurity is fixed at the center of the wire, the self-energy
of the electron �negative� will be larger than the energy be-
tween the electron and the impurity’s image. When the con-
finement energy is negligible, the orbit of the electron will be
closer to the impurity for larger R as the interaction between
the electron and its image become smaller, and the binding
energy will increase slightly. When the impurity is displaced
from the center, the shape of the orbit of the electron will be
more affected by the confinement and the attraction by the
boundary due to the image charge. Consequently, the wave
function will be more spread out for smaller R when R is not
very small, as will be shown in Fig. 12. Therefore the aver-
age distance between the electron and the impurity will be
larger for smaller R �R should not be very small� and the
Coulomb energy �also the binding energy� will be smaller,
which leads to an increasing tendency of the binding energy
with increasing radius R. However, when the radius R is very
large, the electron for different impurity positions will be far
from the interface and the confinement energy will be almost
zero, and the electron will be localized around the impurity
like in a hydrogen atom. Thus, the binding energy will be-
come independent of the impurity position for very large R.

We should specify that for nanowires surrounded by a
metallic gate with a very small radius, the Coulomb interac-
tion between the electron and the impurity �together with the
image� will be very small and the binding energy approaches
zero when the radius tends to zero, which is only shown in
Fig. 9�b� when �i→R. In the case of the variational calcula-
tion, the binding energy is different from zero for most im-
purity positions when R approaches zero. This shows clearly
the limited validity of this approach. However, for the finite
element method, only when the radius is extremely small, it
needs a large amount of iterations to obtain the bound state,
hence, we do not give the data when the radius R is small or
than 0.5 nm.

V. VALIDITY OF THE VARIATIONAL CALCULATION

Because of its simplicity and the limited computer re-
sources needed, the variational approach has been very popu-
lar. It provides an upper bound to the total energy. Aside
from this criterion, there is no other guarantee that one is
close to the exact result. The above results already indicate
that the variational calculation cannot always be accurate.
Therefore, a detailed comparison with the numerically exact
results are important.

For the case of a semiconductor nanowire with a metallic
gate, as shown in Figs. 5 and 9�b�, the binding energy ob-
tained from the variational calculation is very different from
the finite element results, especially for the case when the
impurity is far from the center. One reason is that in the
variational calculation, we assumed the wave function of the
electron to have a cylindrical symmetry. In reality, the sym-
metry will be destroyed when the impurity is moved away
from the axis of the wire. For the case of a GaAs nanowire
with a metallic gate, the attractive interaction between the
electron and the interface also contributes to the destruction
of the symmetry. That is an additional reason why the differ-
ence in the binding energies can be very large when the

(b)

(a)

FIG. 9. �Color online� �a� The binding energy obtained from the
finite element method as a function of the wire radius R for a free-
standing GaAs nanowire. Results are shown for four different val-
ues of impurity position �i. �b� The same as �a� but now for the case
of a GaAs wire with a metallic gate.
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impurity is away from the center of the wire. For a freestand-
ing semiconductor nanowire, as the interaction between the
electron and the interface is repulsive, which partly counter-
acts the effect of the impurity position, the variational calcu-
lation for larger values of R is much more valid. However,
we cannot explain the difference of the validity for these two
nanowires only on the basis of the symmetry of the wave
function. As we will show later, for a GaAs nanowire with a
metallic gate, the symmetry of the wave function in the lat-
eral plane for z=0 will be very good when the impurity is
very close to the boundary and the radius is not very large.

To further study the validity of the variational calculation,
we plot in Fig. 10 the relative difference in binding energy
between the finite element calculation and the variational
one, �Ebind,FEM −Ebind,var�, as a function of the wire radius R.
It is obvious that the relative difference for a freestanding
NW is much smaller than for a NW with a metallic gate.
From Fig. 10�a�, we see that the difference is small when the
radius is smaller than 25 nm. Moreover, the curves for larger
values of �i could be lower than the curves for smaller �i,
although they have worse cylindrical symmetry. For �i
�0.9R, the difference can be even smaller than for the case
when the ionized impurity is fixed at the center. This is re-
markable because the system has perfect cylindrical symme-
try when the ionized impurity is fixed at the center. In order
to understand this, we show the contour plot of the lateral
part of the wave function in Fig. 11. As a comparison, we
give also the radial part of the wave function used in the
variational calculation �the two figures without impurity, the
same as 
��e ,�e�, and proportional to 
e��e ,�e ,z=0�� and
the radial part of the wave function as obtained from the
finite element method. The wave function used in the varia-
tional calculation always has a large average extension from
the center of the wire. The top figures are for the case of R
=15 nm; from the last four figures, we know that the sym-
metry will be better and the wave function will be more
spread out when the ionized impurity is closer to the inter-
face. Here, we should point out that when the radius is R
=15 nm, since the average extension of the electron from the
ionized impurity �as shown in the second figure of the top
figures� is smaller for �i=0 than for �i=0.9R, the difference
of the previous case from the variational one will be larger,
as shown in the inset of Fig. 10�a�. Next, let us look at the
bottom figures which are for R=50 nm. The difference for
all values of �i with the variational wave function is large.
However, due to the repulsive interaction between the elec-
tron and the interface, the wave function for a larger value of
�i will be more spread out and the symmetry will be even
better, so the difference for a larger value of �i is smaller.
When the radius R is very large, then the wave function for
different values of �i will be like that of a hydrogen atom, the
difference will only depend on the symmetry, and, conse-
quently, smaller values of �i will result in smaller differences
in energy, which is apparent from Fig. 10�a�.

Figure 12 shows contour plots of the wave function for a
GaAs nanowire with a metallic gate. When the impurity is
very close to the boundary, the wave function for larger �i
will have a better circular symmetry and also have a similar
average extension as the variational one. The reason is that
when the impurity is very close to the boundary, the Cou-

lomb energy between the electron and the impurity will
counteract the Coulomb energy between the image of the
impurity and the electron; the electron will only have the
self-energy coming from the dielectric mismatch. Therefore,
the wave function in the radial part for z=0 is close to the
variational one. From Fig. 12, we are not able to explain why
the difference in the binding energies from the two methods
are so large �as shown in Fig. 10�b��. Therefore, we calcu-
lated the average extension of the electron in the z direction
��z2�, which is shown in Fig. 13. The difference in ��z2�
between the two methods is smaller for a freestanding GaAs
nanowires than for a GaAs nanowire with a metallic gate.
For freestanding nanowires, the difference is very small
when R�15 nm and becomes larger when the radius R in-
creases. However, when the impurity is very close to the
boundary, the difference will still be small when R=20 nm,
which is another reason for the unusual features shown in the
inset of Fig. 10 �the binding energy difference between the

(b)

(a)

FIG. 10. �Color online� Relative difference between the binding
energy obtained from the finite element calculation and the varia-
tional approach �Ebind,FEM −Ebind,var� divided by the results from the
finite element calculation, as a function of the wire radius R. �a�
Freestanding GaAs nanowire. The inset is an enlargement of the
curves when R is smaller than 25 nm. �b� GaAs NW surrounded by
a metallic gate.
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two methods for larger values of �i will be smaller�. For a
GaAs nanowire surrounded by a metallic gate, we find from
Fig. 13�b� that the difference in ��z2� from the two methods
is small only when the impurity is close to the center of the
wire and the radius R is small. For large �i, the difference in
��z2� will be very large, which is the reason why the validity
range of the variational calculation is limited. From Fig. 13,
we also notice that for both types of nanowires, when the
impurity position �i is not very far from the center, the aver-
age extension of the electron in the z direction, ��z2�, will
increase when we increase the radius of the wire R. How-
ever, if the impurity is very close to the boundary, ��z2� does
not increase monotonously; it will first increase, then de-
crease when the radius of the wire R increases �see the
curves for �i=0.9R and �i=0.96R�. However, all the curves
for ��z2� will overlap with each other when the radius is very
large in both kinds of nanowires, as the ionized impurity
becomes similar to a hydrogen atom.

The physical reason for the increasing tendency of ��z2� is
the same for freestanding nanowires and nanowires with a metallic gate, but is different for the decreasing tendency

when the impurity is close to the boundary �like �i=0.9R�.
The increasing tendency can be explained with the help of
Fig. 14, which is for the case of �i=0. For larger �i, the
curves are similar, except that the well should move to the
boundary. The electron can be treated as moving in an infi-
nitely deep well due to the Coulomb interaction. For GaAs,
the effective Bohr radius is around 9 nm in the bulk material
and is proportional to the width of the well. Here, when R is
very small �Fig. 14�a�; R smaller than the effective Bohr
radius�, the width of the total potential well is smaller than
the width in the bulk material and the electron will be closer
to the impurity and has a larger Coulomb energy. When we
increase the radius, the width of the well will also increase,
but is still smaller than in the bulk material. Notice that Fig.
14�b� looks qualitatively the same as Fig. 14�a� but, in this
case, R=5 nm, the width of the wire is much larger, and the
Coulomb energy between the electron and the impurity will
thus be smaller, resulting in an increase of ��z2�. When the
radius R is very large �Fig. 14�c�; much larger than the ef-
fective Bohr radius of 9 nm�, the electron will stay in the
potential well of the ionized impurity, which is similar to that

FIG. 11. �Color online� Contour plot of the ground state wave
function obtained from the finite element method for a freestanding
GaAs nanowire �lateral section at z=0�. The two figures in the first
column are the same as 
��e ,�e� �radial part of the wave function,
which we used in the variational calculation, proportional to

e��e ,�e ,z=0��. We give results for five different impurity positions
and two values of the wire radius.

FIG. 12. �Color online� Contour plot of the ground state wave
function obtained from the finite element method for a GaAs nano-
wire surrounded by a metallic gate �radial section for z=0�. The two
figures in the first column are the same as 
��e ,�e� �radial part of
the wave function, which we used in the variational calculation�.
Results are given for three different impurity positions and two
values of the wire radius.

FIG. 13. �Color online� Average extension of the electron in the
z direction for �a� a freestanding GaAa nanowires and �b� a GaAs
nanowire surrounded by a metallic gate. Solid lines are the results
from the variational calculation, and the solid lines with a symbol
are from FEM. We consider four different ionized impurity posi-
tions. Insets: Results for large R.
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of an effective hydrogen atom, and thus ��z2� will become
equal to the effective Bohr radius and, consequently, all the
curves will overlap. We need to point out that, as shown in
Fig. 14�a�, the width of the potential well for a freestanding
nanowire is narrower than for a nanowire surrounded by a
metallic gate and that the corresponding electron will be
more spread out in the latter case.

The decreasing tendency of ��z2� for large �i is due to the
repulsive interaction from the boundary, which forces the
electron to move away from the impurity. For example, when
�i=0.9R and R=40 nm, the distance of the impurity from the
boundary is only 0.1R=4 nm, but the effective Bohr radius is
around 9 nm for such a nanowire. When we continue to in-
crease the radius R, the repulsive interaction will decrease, so
the electron will be closer to the boundary in the radial plane
�and, thus, also close to the impurity� and the Coulomb in-
teraction between the electron and the impurity will increase,
which leads to a decreasing ��z2� with R.

For a GaAs nanowire surrounded by a metallic gate, we
have a different situation, since the Coulomb interaction be-
tween the electron and the boundary is now attractive. As the
impurity will be like an effective hydrogen atom when R is
very large, here we only need to confirm that there exists a
range of radius where ��z2� is very large. Actually, we can
see this in Fig. 13�b�, where ��z2� for larger �i could be very
large. There are two possible reasons: �1� We know that for a
nanowire with a metallic gate, the self-energy is also nega-
tive and, when the impurity is very close to the boundary, the
self-energy will make the Coulomb potential well much
wider �superposition of two infinite deep wells as shown in

Fig. 14�d�; the well will be more spread out�, the Coulomb
energy between the electron and the impurity will decrease,
and so ��z2� will be larger than in the bulk. �2� When the
impurity is very close to the boundary, the Coulomb interac-
tion between the electron and the image of the impurity will
counteract the direct interaction between the electron and the
impurity in both the lateral plane and the z direction �see Fig.
14�d�, where in a large region the total potential energy is
close to zero�. The Coulomb interaction with the electron
will be very small along the z direction, leading to a large
value for ��z2�.

If we extend the R range as shown in the inset of Figs.
13�a� and 13�b�, we find that ��z2� tends toward a constant
value ��z2��9 nm in both cases.

VI. CONCLUSIONS

The variational method and the finite element method
were used to calculate the lowest shallow impurity states in a
semiconductor nanowire with and without a metallic gate.
We found that the variation of the electron total energy as
function of the impurity position for two kinds of nanowires
is very similar. The binding energy, on the other hand, be-
haves very differently for both types of nanowires. For a
freestanding semiconductor nanowire, the binding energy be-
comes much larger due to the dielectric mismatch effect. It
decreases when we increase the radius of the wire, which
implies that the impurity can be ionized easier when the
radius R of the wire increases. The binding energy has a very
weak dependence on the position of the impurity. For the
nanowire with a metallic gate, the binding energy is much
smaller �only several meV� and the dependence on the im-
purity position is as important as on the radius of the wire R.
The binding energy first decreases and then increases as we
increase the wire radius R. When the impurity is very close
to the edge of the nanowire, the binding energy approaches
zero for small R.

The average extension in the z direction ��z2� will in-
crease when we increase the radius R, which is different
from the case when the impurity is very close to the bound-
ary, where we found that ��z2� decreases with increasing
radius R. We found that the variational calculation is more
reliable for freestanding nanowires than for NWs surrounded
by a metallic gate.
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